

Herndon Parkway & Sterling Road Intersection Study

Presented to **Town of Herndon**

Presented by Vanasse Hangen Brustlin, Inc.

March 11, 2014

Study Area

Herndon Parkway & Sterling Road

Objective

- Study to Determine Feasibility of:
 - Traffic Operations Improvements
 - Signal Timings
 - Turn Restrictions
 - Roadway Capacity Improvements
 - Restriping
 - Lane Conversions
 - New Lanes

Approach

- Major Study Components:
 - ✓ Origin/Destination Survey
 - ✓ Development of Alternatives
 - ✓ Alternatives Analysis
 - ✓ Cost and Constraints Evaluation
 - ✓ Refinement of Alternatives
 - ✓ Revised Analysis
 - ➤ Selection of Preferred Alternatives
 - Design
 - Construction

Origin/Destination Survey – Is There Cut-Thru?

HERNDON PARKWAY AND STERLING ROAD: OD STUDY RESULTS PM DESTINATIONS FOR TRAFFIC ORIGINATING FROM WB VA-267

O/D Analysis – Results

- WB 267 (Dulles Toll Road) to 606 (Sterling Road)
 - PM Peak Hour
 - 506 vehicles at Dulles Toll Road exit
 - 7 of those to Sterling Road west of study area (1%)
 - Other peak hours/directions similar
- No evidence of significant cut-thru traffic

Development of Alternatives

Cost Category	Types of Improvements	Alternatives
Low-Cost (< \$30,000)	Existing signal phasing/timing changesTurn prohibitions	B', H, I, J, K
Moderate-Cost (< \$250,000)	Modify existing signage/ pavement markingsSignal equipment modifications	A, B, C, C', D, E, A+H, C'+H
High-Cost (\$250,000+)	Road wideningMoving/adding new equipmentIntersection redesign	F, G1, G2, A+F, C'+F, A+G1, A+G2, C'+G1, C'+G2, C'+F+G2, R5

Initial Alternatives

Refinement of Alternatives

- Operational Analysis
 - Retained options with most improvement in each cost category

- Constraints
 - Available right-of-way
 - Off-site impacts (u-turns, traffic diversion)
 - Alignment issues
 - Relocation/reconstruction of existing infrastructure

- Additional Alternatives
 - Balance operational benefits and constraints

Alternative L4

Alternative L3

Alternative L1'

Alternative C'+F+G2

Preferred Alternative Summary

- Near-term, Moderate-cost:
 - L4 (south leg only) smallest scope, least benefit

• L3 (north & south legs) – intermediate scope and benefit

• L1' (north, south, west legs) – largest scope, most benefit

- Long-term, High-cost:
 - C'+F+G2 (north, south, west legs and widening) requires additional funding, longer delivery time, nearby developments still in planning stage

L1'=8

Preferred Alternative of Commenters

Other=3

L3 Pedestrian Enhancements

- Shortened Crosswalks by:
 - 30'-North
 - 8'-East
 - 17'-South
 - 11'-West
- New Curb Ramps

QUESTIONS?